Genetic analysis of spirochete flagellin proteins and their involvement in motility, filament assembly, and flagellar morphology.

نویسندگان

  • Chunhao Li
  • Charles W Wolgemuth
  • Michael Marko
  • David G Morgan
  • Nyles W Charon
چکیده

The filaments of spirochete periplasmic flagella (PFs) have a unique structure and protein composition. In most spirochetes, the PFs consist of a core of at least three related proteins (FlaB1, FlaB2, and FlaB3) and a sheath of FlaA protein. The functions of these filament proteins remain unknown. In this study, we used a multidisciplinary approach to examine the role of these proteins in determining the composition, shape, and stiffness of the PFs and how these proteins impact motility by using the spirochete Brachyspira (formerly Treponema, Serpulina) hyodysenteriae as a genetic model. A series of double mutants lacking combinations of these PF proteins was constructed and analyzed. The results show the following. First, the diameters of PFs are primarily determined by the sheath protein FlaA, and that FlaA can form a sheath in the absence of an intact PF core. Although the sheath is important to the PF structure and motility, it is not essential. Second, the three core proteins play unequal roles in determining PF structure and swimming speed. The functions of the core proteins FlaB1 and FlaB2 overlap such that either one of these proteins is essential for the spirochete to maintain the intact PF structure and for cell motility. Finally, linear elasticity theory indicates that flagellar stiffness directly affects the spirochete's swimming speed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutations in the Borrelia burgdorferi Flagellar Type III Secretion System Genes fliH and fliI Profoundly Affect Spirochete Flagellar Assembly, Morphology, Motility, Structure, and Cell Division

UNLABELLED The Lyme disease spirochete Borrelia burgdorferi migrates to distant sites in the tick vectors and mammalian hosts through robust motility and chemotaxis activities. FliH and FliI are two cytoplasmic proteins that play important roles in the type III secretion system (T3SS)-mediated export and assembly of flagellar structural proteins. However, detailed analyses of the roles of FliH ...

متن کامل

Archaeal flagellin combines a bacterial type IV pilin domain with an Ig-like domain.

The bacterial flagellar apparatus, which involves ∼40 different proteins, has been a model system for understanding motility and chemotaxis. The bacterial flagellar filament, largely composed of a single protein, flagellin, has been a model for understanding protein assembly. This system has no homology to the eukaryotic flagellum, in which the filament alone, composed of a microtubule-based ax...

متن کامل

Bacterial flagellar capping proteins adopt diverse oligomeric states

Flagella are crucial for bacterial motility and pathogenesis. The flagellar capping protein (FliD) regulates filament assembly by chaperoning and sorting flagellin (FliC) proteins after they traverse the hollow filament and exit the growing flagellum tip. In the absence of FliD, flagella are not formed, resulting in impaired motility and infectivity. Here, we report the 2.2 Å resolution X-ray c...

متن کامل

A family of six flagellin genes contributes to the Caulobacter crescentus flagellar filament.

The Caulobacter crescentus flagellar filament is assembled from multiple flagellin proteins that are encoded by six genes. The amino acid sequences of the FljJ and FljL flagellins are divergent from those of the other four flagellins. Since these flagellins are the first to be assembled in the flagellar filament, one or both might have specialized to facilitate the initiation of filament assembly.

متن کامل

Mutational analysis of the Rhizobium lupini H13-3 and Sinorhizobium meliloti flagellin genes: importance of flagellin A for flagellar filament structure and transcriptional regulation.

Complex flagellar filaments are unusual in their fine structure composed of flagellin dimers, in their right-handed helicity, and in their rigidity, which prevents a switch of handedness. The complex filaments of Rhizobium lupini H13-3 and those of Sinorhizobium meliloti are composed of three and four flagellin (Fla) subunits, respectively. The Fla-encoding genes, named flaA through flaD, are s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 190 16  شماره 

صفحات  -

تاریخ انتشار 2008